Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618024 | Journal of Mathematical Analysis and Applications | 2011 | 20 Pages |
Abstract
Let a be a semi-almost periodic matrix function with the almost periodic representatives al and ar at −∞ and +∞, respectively. Suppose p:R→(1,∞) is a slowly oscillating exponent such that the Cauchy singular integral operator S is bounded on the variable Lebesgue space Lp(⋅)(R). We prove that if the operator aP+Q with P=(I+S)/2 and Q=(I−S)/2 is Fredholm on the variable Lebesgue space , then the operators alP+Q and arP+Q are invertible on standard Lebesgue spaces and with some exponents ql and qr lying in the segments between the lower and the upper limits of p at −∞ and +∞, respectively.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis