Article ID Journal Published Year Pages File Type
4618024 Journal of Mathematical Analysis and Applications 2011 20 Pages PDF
Abstract

Let a be a semi-almost periodic matrix function with the almost periodic representatives al and ar at −∞ and +∞, respectively. Suppose p:R→(1,∞) is a slowly oscillating exponent such that the Cauchy singular integral operator S is bounded on the variable Lebesgue space Lp(⋅)(R). We prove that if the operator aP+Q with P=(I+S)/2 and Q=(I−S)/2 is Fredholm on the variable Lebesgue space , then the operators alP+Q and arP+Q are invertible on standard Lebesgue spaces and with some exponents ql and qr lying in the segments between the lower and the upper limits of p at −∞ and +∞, respectively.

Related Topics
Physical Sciences and Engineering Mathematics Analysis