Article ID Journal Published Year Pages File Type
4618290 Journal of Mathematical Analysis and Applications 2011 13 Pages PDF
Abstract

In this paper we study the Cauchy problem of the non-isotropically perturbed fourth-order nonlinear Schrödinger type equation: ((x1,x2,…,xn)∈Rn, t⩾0), where a is a real constant, 1⩽d0. By using Kato method, we prove that this perturbed fourth-order Schrödinger type equation is locally well-posed with initial data belonging to the non-isotropic Sobolev spaces provided that s1,s2 satisfy the conditions: s1⩾0, s2⩾0 for or for with some additional conditions. Furthermore, by using non-isotropic Sobolev inequality and energy method, we obtain some global well-posedness results for initial data belonging to non-isotropic Sobolev spaces .

Related Topics
Physical Sciences and Engineering Mathematics Analysis