Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618387 | Journal of Mathematical Analysis and Applications | 2011 | 18 Pages |
In this paper we analyze the homogenization of the wave equation with bounded variation coefficients in time, generalizing the classical result, which assumes Lipschitz-continuity. We start showing a general existence and uniqueness result for a general sort of hyperbolic equations. Then, we obtain our homogenization result comparing the solution of a sequence of wave equations to the solution of a sequence of elliptic ones. We conclude the paper making an analysis of the corrector. Firstly, we obtain a corrector result assuming that the derivative of the coefficients in the time variable is equicontinuous. This result was known for non-time dependent coefficients. After, we show, with a counterexample, that the regularity hypothesis for the corrector theorem is optimal in the sense that it does not hold if the time derivative of the coefficients is just bounded.