Article ID Journal Published Year Pages File Type
4618428 Journal of Mathematical Analysis and Applications 2011 13 Pages PDF
Abstract

In this paper we present a predator–prey mathematical model for two biological populations which dislike crowding. The model consists of a system of two degenerate parabolic equations with nonlocal terms and drifts. We provide conditions on the system ensuring the periodic coexistence, namely the existence of two non-trivial non-negative periodic solutions representing the densities of the two populations. We assume that the predator species is harvested if its density exceeds a given threshold. A minimization problem for a cost functional associated with this process and with some other significant parameters of the model is also considered.

Related Topics
Physical Sciences and Engineering Mathematics Analysis