Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618444 | Journal of Mathematical Analysis and Applications | 2011 | 13 Pages |
Let T be a tree rooted at e endowed with a nearest-neighbor transition probability that yields a recurrent random walk. We show that there exists a function K biharmonic off e whose Laplacian has potential theoretic importance and, in addition, has the following property: Any function f on T which is biharmonic outside a finite set has a representation, unique up to addition of a harmonic function, of the form f=βK+B+L, where β a constant, B is a biharmonic function on T, and L is a function, subject to certain normalization conditions, whose Laplacian is constant on all sectors sufficiently far from the root. We obtain a characterization of the functions biharmonic outside a finite set whose Laplacian has 0 flux similar to one that holds for a function biharmonic outside a compact set in Rn for n=2,3, and 4 proved by Bajunaid and Anandam. Moreover, we extend the definition of flux and, under certain restrictions on the tree, we characterize the functions biharmonic outside a finite set that have finite flux in this extended sense.