Article ID Journal Published Year Pages File Type
4618465 Journal of Mathematical Analysis and Applications 2011 11 Pages PDF
Abstract

In this paper, we study the existence and multiplicity of homoclinic orbits for a class of first-order nonperiodic Hamiltonian systems. By applying two recent critical point theorems for strongly indefinite functionals, we give some new criteria to guarantee that Hamiltonian systems with asymptotically quadratic terms and spectrum point zero have at least one and a finite number of pairs of homoclinic orbits under some adequate conditions, respectively.

Related Topics
Physical Sciences and Engineering Mathematics Analysis