Article ID Journal Published Year Pages File Type
4618470 Journal of Mathematical Analysis and Applications 2011 10 Pages PDF
Abstract

We prove a series of results concerning the emptiness and non-emptiness of a certain set of Sobolev functions related to the well-posedness of a two-phase minimization problem, involving both the p(x)-norm and the infinity norm. The results, although interesting in their own right, hold the promise of a wider applicability since they can be relevant in the context of other problems where minimization of the p-energy in a part of the domain is coupled with the more local minimization of the L∞-norm on another region.

Related Topics
Physical Sciences and Engineering Mathematics Analysis