Article ID Journal Published Year Pages File Type
4618474 Journal of Mathematical Analysis and Applications 2011 15 Pages PDF
Abstract

In this paper, we consider a Lipschitz optimization problem (LOP) constrained by linear functions in Rn. In general, since it is hard to solve (LOP) directly, (LOP) is transformed into a certain problem (MP) constrained by a ball in Rn+1. Despite there is no guarantee that the objective function of (MP) is quasi-convex, by using the idea of the quasi-conjugate function defined by Thach (1991) [1], we can construct its dual problem (DP) as a quasi-convex maximization problem. We show that the optimal value of (DP) coincides with the multiplication of the optimal value of (MP) by −1, and that each optimal solution of the primal and dual problems can be easily obtained by the other. Moreover, we formulate a bidual problem (BDP) for (MP) (that is, a dual problem for (DP)). We show that the objective function of (BDP) is a quasi-convex function majorized by the objective function of (MP) and that both optimal solution sets of (MP) and (BDP) coincide. Furthermore, we propose an outer approximation method for solving (DP).

Related Topics
Physical Sciences and Engineering Mathematics Analysis