Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618474 | Journal of Mathematical Analysis and Applications | 2011 | 15 Pages |
In this paper, we consider a Lipschitz optimization problem (LOP) constrained by linear functions in Rn. In general, since it is hard to solve (LOP) directly, (LOP) is transformed into a certain problem (MP) constrained by a ball in Rn+1. Despite there is no guarantee that the objective function of (MP) is quasi-convex, by using the idea of the quasi-conjugate function defined by Thach (1991) [1], we can construct its dual problem (DP) as a quasi-convex maximization problem. We show that the optimal value of (DP) coincides with the multiplication of the optimal value of (MP) by −1, and that each optimal solution of the primal and dual problems can be easily obtained by the other. Moreover, we formulate a bidual problem (BDP) for (MP) (that is, a dual problem for (DP)). We show that the objective function of (BDP) is a quasi-convex function majorized by the objective function of (MP) and that both optimal solution sets of (MP) and (BDP) coincide. Furthermore, we propose an outer approximation method for solving (DP).