Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618517 | Journal of Mathematical Analysis and Applications | 2011 | 25 Pages |
Abstract
In this paper we study the problem of utility indifference pricing in a constrained financial market, using a utility function defined over the positive real line. We present a convex risk measure −v(•:y) satisfying q(x,F)=x+v(F:u0(x)), where u0(x) is the maximal expected utility of a small investor with the initial wealth x, and q(x,F) is a utility indifference buy price for a European contingent claim with a discounted payoff F. We provide a dynamic programming equation associated with the risk measure (−v), and characterize v as a viscosity solution of this equation.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis