Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618579 | Journal of Mathematical Analysis and Applications | 2011 | 10 Pages |
Abstract
Let A and B be uniform algebras on first-countable, compact Hausdorff spaces X and Y, respectively. For f∈A, the peripheral spectrum of f, denoted by σπ(f)={λ∈σ(f):|λ|=‖f‖}, is the set of spectral values of maximum modulus. A map T:A→B is weakly peripherally multiplicative if σπ(T(f)T(g))∩σπ(fg)≠∅ for all f,g∈A. We show that if T is a surjective, weakly peripherally multiplicative map, then T is a weighted composition operator, extending earlier results. Furthermore, if T1,T2:A→B are surjective mappings that satisfy σπ(T1(f)T2(g))∩σπ(fg)≠∅ for all f,g∈A, then T1(f)T2(1)=T1(1)T2(f) for all f∈A, and the map f↦T1(f)T2(1) is an isometric algebra isomorphism.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis