Article ID Journal Published Year Pages File Type
4618581 Journal of Mathematical Analysis and Applications 2011 10 Pages PDF
Abstract

Given a separable, infinite dimensional Hilbert space, it was recently shown by the authors that there is a path of chaotic operators, which is dense in the operator algebra with the strong operator topology, and along which every operator has the exact same dense Gδ set of hypercyclic vectors. In the present work, we show that the conjugate set of any hypercyclic operator on a separable, infinite dimensional Banach space always contains a path of operators which is dense with the strong operator topology, and yet the set of common hypercyclic vectors for the entire path is a dense Gδ set. As a corollary, the hypercyclic operators on such a Banach space form a connected subset of the operator algebra with the strong operator topology.

Related Topics
Physical Sciences and Engineering Mathematics Analysis