Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618601 | Journal of Mathematical Analysis and Applications | 2011 | 23 Pages |
Abstract
We consider a nonlinear periodic problem, driven by the scalar p-Laplacian with a concave term and a Caratheodory perturbation. We assume that this perturbation f(t,x) is (p−1)-linear at ±∞, and resonance can occur with respect to an eigenvalue λm+1, m⩾2, of the negative periodic scalar p-Laplacian. Using a combination of variational techniques, based on the critical point theory, with Morse theory, we establish the existence of at least three nontrivial solutions. Useful in our considerations is an alternative minimax characterization of λ1>0 (the first nonzero eigenvalue) that we prove in this work.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis