Article ID Journal Published Year Pages File Type
4618627 Journal of Mathematical Analysis and Applications 2011 14 Pages PDF
Abstract

We study families of holomorphic vector fields, holomorphically depending on parameters, in a neighborhood of an isolated singular point. When the singular point is in the Poincaré domain for every vector field of the family we prove, through a modification of classical Sternberg's linearization argument, cf. Nelson (1969) [7], too, analytic dependence on parameters of the linearizing maps and geometric bounds on the linearization domain: each vector field of the family is linearizable inside the smallest Euclidean sphere which is not transverse to the vector field, cf. Brushlinskaya (1971) [2], , Ilyashenko and Yakovenko (2008) [5], for related results. We also prove, developing ideas in Martinet (1980) [6], a version of Brjuno's Theorem in the case of linearization of families of vector fields near a singular point of Siegel type, and apply it to study some 1-parameter families of vector fields in two dimensions.

Related Topics
Physical Sciences and Engineering Mathematics Analysis