Article ID Journal Published Year Pages File Type
4618639 Journal of Mathematical Analysis and Applications 2011 19 Pages PDF
Abstract

We establish the robustness of linear cocycles with an exponential dichotomy, under sufficiently small Lipschitz perturbations, in the sense that the existence of an exponential dichotomy for a given cocycle persists under these perturbations. We consider cocycles in Banach spaces, as well as the general case of nonuniform exponential dichotomies, and also the general case of an exponential behavior ecρ(n), given by an arbitrary sequence ρ(n) including the usual exponential behavior ρ(n)=n as a very special case. Moreover, we show that the projections of the exponential dichotomies obtained from the perturbation vary continuously with the parameter, and in fact that they are locally Lipschitz on finite-dimensional parameters.

Related Topics
Physical Sciences and Engineering Mathematics Analysis