Article ID Journal Published Year Pages File Type
4618690 Journal of Mathematical Analysis and Applications 2011 13 Pages PDF
Abstract

This paper is concerned with an operator equation Ax+Bx+Cx=x on ordered Banach spaces, where A is an increasing α-concave operator, B is an increasing sub-homogeneous operator and C is a homogeneous operator. The existence and uniqueness of its positive solutions is obtained by using the properties of cones and a fixed point theorem for increasing general β-concave operators. As applications, we utilize the fixed point theorems obtained in this paper to study the existence and uniqueness of positive solutions for two classes nonlinear problems which include fourth-order two-point boundary value problems for elastic beam equations and elliptic value problems for Lane–Emden–Fowler equations.

Related Topics
Physical Sciences and Engineering Mathematics Analysis