Article ID Journal Published Year Pages File Type
4618706 Journal of Mathematical Analysis and Applications 2011 13 Pages PDF
Abstract

We introduce the symmetric Radon–Nikodým property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon–Nikodým properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products.

Related Topics
Physical Sciences and Engineering Mathematics Analysis