Article ID Journal Published Year Pages File Type
4618713 Journal of Mathematical Analysis and Applications 2011 19 Pages PDF
Abstract

We establish the existence and uniqueness of solutions for sine-Gordon equations in a multidimensional setting. The equations contain a point-like source. Furthermore, the continuity and the Gâteaux differentiability of the solution map is established. An identification problem for parameters governing the equations is set, and is shown to have a solution. The objective function is proved to be Fréchet differentiable with respect to the parameters. An expression for the Fréchet derivative in terms of the solutions of the direct and the adjoint systems is presented. A criterion for optimal parameters is formulated as a bang-bang control principle. An application of these results to the one-dimensional sine-Gordon equation is considered.

Related Topics
Physical Sciences and Engineering Mathematics Analysis