Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618725 | Journal of Mathematical Analysis and Applications | 2011 | 9 Pages |
In this paper, by means of a basic result concerning the estimation of the lower bounds of upper convex densities for the self-similar sets, we show that in the Sierpinski gasket, the minimum value of the upper convex densities is achieved at the vertices. In addition, we get new lower bounds of upper convex densities for the famous classical fractals such as the Koch curve, the Sierpinski gasket and the Cartesian product of the middle third Cantor set with itself, etc. One of the main results improves corresponding result in the relevant reference. The method presented in this paper is different from that in the work by Z. Zhou and L. Feng [The minimum of the upper convex density of the product of the Cantor set with itself, Nonlinear Anal. 68 (2008) 3439–3444].