Article ID Journal Published Year Pages File Type
4618744 Journal of Mathematical Analysis and Applications 2011 18 Pages PDF
Abstract

In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.

Related Topics
Physical Sciences and Engineering Mathematics Analysis