Article ID Journal Published Year Pages File Type
4618774 Journal of Mathematical Analysis and Applications 2011 20 Pages PDF
Abstract

In this paper, firstly, we consider the regularity of solutions in to the 1D Navier–Stokes–Poisson equations with density-dependent viscosity and the initial density that is connected to vacuum with discontinuities, and the viscosity coefficient is proportional to ρθ with 0<θ<1. Furthermore, we get the asymptotic behavior of the solutions when the viscosity coefficient is a constant. This is a continuation of [S.J. Ding, H.Y. Wen, L. Yao, C.J. Zhu, Global solutions to one-dimensional compressible Navier–Stokes–Poisson equations with density-dependent viscosity, J. Math. Phys. 50 (2009) 023101], where the existence and uniqueness of global weak solutions in H1([0,1]) for both cases: μ(ρ)=ρθ, 0<θ<1 and μ=constant have been established.

Related Topics
Physical Sciences and Engineering Mathematics Analysis