Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618774 | Journal of Mathematical Analysis and Applications | 2011 | 20 Pages |
Abstract
In this paper, firstly, we consider the regularity of solutions in to the 1D Navier–Stokes–Poisson equations with density-dependent viscosity and the initial density that is connected to vacuum with discontinuities, and the viscosity coefficient is proportional to ρθ with 0<θ<1. Furthermore, we get the asymptotic behavior of the solutions when the viscosity coefficient is a constant. This is a continuation of [S.J. Ding, H.Y. Wen, L. Yao, C.J. Zhu, Global solutions to one-dimensional compressible Navier–Stokes–Poisson equations with density-dependent viscosity, J. Math. Phys. 50 (2009) 023101], where the existence and uniqueness of global weak solutions in H1([0,1]) for both cases: μ(ρ)=ρθ, 0<θ<1 and μ=constant have been established.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis