Article ID Journal Published Year Pages File Type
4618811 Journal of Mathematical Analysis and Applications 2010 12 Pages PDF
Abstract

In this paper, we investigate the existence of positive solutions for the singular fractional boundary value problem: Dαu(t)+f(t,u(t),Dμu(t))=0, u(0)=u(1)=0, where 1<α<2, 0<μ⩽α−1, Dα is the standard Riemann–Liouville fractional derivative, f is a positive Carathéodory function and f(t,x,y) is singular at x=0. By means of a fixed point theorem on a cone, the existence of positive solutions is obtained. The proofs are based on regularization and sequential techniques.

Related Topics
Physical Sciences and Engineering Mathematics Analysis