Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618888 | Journal of Mathematical Analysis and Applications | 2010 | 8 Pages |
Abstract
Let X be a Banach space of dimension greater than 1. We prove that if a map δ:B(X)→B(X)δ:B(X)→B(X) satisfiesδ([A,B])=[δ(A),B]+[A,δ(B)]δ([A,B])=[δ(A),B]+[A,δ(B)] for any A,B∈B(X)A,B∈B(X), then δ=D+τδ=D+τ, where D is an additive derivation of B(X)B(X) and the map τ:B(X)→FIτ:B(X)→FI vanishes at commutators [A,B][A,B].
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Fangyan Lu, Benhong Liu,