Article ID Journal Published Year Pages File Type
4618906 Journal of Mathematical Analysis and Applications 2010 13 Pages PDF
Abstract

This paper deals with the existence of traveling wave solutions in delayed nonlocal diffusion systems with mixed monotonicity. Based on two different mixed-quasimonotonicity reaction terms, we propose new definitions of upper and lower solutions. By using Schauder's fixed point theorem and a new cross-iteration scheme, we reduce the existence of traveling wave solutions to the existence of a pair of upper and lower solutions. The general results obtained have been applied to type-K monotone and type-K competitive nonlocal diffusive Lotka–Volterra systems.

Related Topics
Physical Sciences and Engineering Mathematics Analysis