Article ID Journal Published Year Pages File Type
4618920 Journal of Mathematical Analysis and Applications 2010 26 Pages PDF
Abstract

We study the boundary exact controllability for the semilinear Schrödinger equation defined on an open, bounded, connected set Ω of a complete, n-dimensional, Riemannian manifold M with metric g. We prove the locally exact controllability around the equilibria under some checkable geometrical conditions. Our results show that exact controllability is geometrical characters of a Riemannian metric, given by the coefficients and equilibria of the semilinear Schrödinger equation. We then establish the globally exact controllability in such a way that the state of the semilinear Schrödinger equation moves from an equilibrium in one location to an equilibrium in another location.

Related Topics
Physical Sciences and Engineering Mathematics Analysis