Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4618927 | Journal of Mathematical Analysis and Applications | 2010 | 10 Pages |
For the nonlinear and dispersive long gravity waves traveling in two horizontal directions with varying depth of the water, we consider a variable-coefficient variant Boussinesq (vcvB) model with symbolic computation. We construct the connection between the vcvB model and a variable-coefficient Ablowitz–Kaup–Newell–Segur (vcAKNS) system under certain constraints. Using the N-fold Darboux transformation of the vcAKNS system, we present two sets of multi-solitonic solutions for the vcvB model, which are expressed in terms of the Vandermonde-like and double Wronskian determinants, respectively. Dynamics of those solutions are analyzed and graphically discussed, such as the parallel solitonic waves, shape-changing collision, head-on collision, fusion-fission behavior and elastic-fusion coupled interaction.