Article ID Journal Published Year Pages File Type
4618927 Journal of Mathematical Analysis and Applications 2010 10 Pages PDF
Abstract

For the nonlinear and dispersive long gravity waves traveling in two horizontal directions with varying depth of the water, we consider a variable-coefficient variant Boussinesq (vcvB) model with symbolic computation. We construct the connection between the vcvB model and a variable-coefficient Ablowitz–Kaup–Newell–Segur (vcAKNS) system under certain constraints. Using the N-fold Darboux transformation of the vcAKNS system, we present two sets of multi-solitonic solutions for the vcvB model, which are expressed in terms of the Vandermonde-like and double Wronskian determinants, respectively. Dynamics of those solutions are analyzed and graphically discussed, such as the parallel solitonic waves, shape-changing collision, head-on collision, fusion-fission behavior and elastic-fusion coupled interaction.

Related Topics
Physical Sciences and Engineering Mathematics Analysis