Article ID Journal Published Year Pages File Type
4618966 Journal of Mathematical Analysis and Applications 2010 9 Pages PDF
Abstract

Let A be a compact set in Rp of Hausdorff dimension d. For s∈(0,d), the Riesz s-equilibrium measure μs,A is the unique Borel probability measure with support in A that minimizes the double integral over the Riesz s-kernel |x−y|−s over all such probability measures. In this paper we show that if A is a strictly self-similar d-fractal, then μs,A converges in the weak-star topology to normalized d-dimensional Hausdorff measure restricted to A as s approaches d from below.

Related Topics
Physical Sciences and Engineering Mathematics Analysis