Article ID Journal Published Year Pages File Type
4618988 Journal of Mathematical Analysis and Applications 2010 9 Pages PDF
Abstract

We give a complete characterization of 2π-periodic matrix weights W for which the vector-valued trigonometric system forms a Schauder basis for the matrix weighted space Lp(T;W). Then trigonometric quasi-greedy bases for Lp(T;W) are considered. Quasi-greedy bases are systems for which the simple thresholding approximation algorithm converges in norm. It is proved that such a trigonometric basis can be quasi-greedy only for p=2, and whenever the system forms a quasi-greedy basis, the basis must actually be a Riesz basis.

Related Topics
Physical Sciences and Engineering Mathematics Analysis