Article ID Journal Published Year Pages File Type
4619101 Journal of Mathematical Analysis and Applications 2010 18 Pages PDF
Abstract

In this paper, we give two explicit examples of unbounded linear maximal monotone operators. The first unbounded linear maximal monotone operator S on ℓ2 is skew. We show its domain is a proper subset of the domain of its adjoint S∗, and −S∗ is not maximal monotone. This gives a negative answer to a recent question posed by Svaiter. The second unbounded linear maximal monotone operator is the inverse Volterra operator T on L2[0,1]. We compare the domain of T with the domain of its adjoint T∗ and show that the skew part of T admits two distinct linear maximal monotone skew extensions. These unbounded linear maximal monotone operators show that the constraint qualification for the maximality of the sum of maximal monotone operators cannot be significantly weakened, and they are simpler than the example given by Phelps–Simons. Interesting consequences on Fitzpatrick functions for sums of two maximal monotone operators are also given.

Related Topics
Physical Sciences and Engineering Mathematics Analysis