Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4619104 | Journal of Mathematical Analysis and Applications | 2010 | 14 Pages |
Abstract
We study the Subnormal Completion Problem (SCP) for 2-variable weighted shifts. We use tools and techniques from the theory of truncated moment problems to give a general strategy to solve SCP. We then show that when all quadratic moments are known (equivalently, when the initial segment of weights consists of five independent data points), the natural necessary conditions for the existence of a subnormal completion are also sufficient. To calculate explicitly the associated Berger measure, we compute the algebraic variety of the associated truncated moment problem; it turns out that this algebraic variety is precisely the support of the Berger measure of the subnormal completion.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis