Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4619194 | Journal of Mathematical Analysis and Applications | 2010 | 13 Pages |
Abstract
Chebyshev systems induce in a natural way a concept of convexity. The functions convex in this sense behave in many aspects similarly to ordinary convex functions. In this paper support-type properties are investigated. Using osculatory interpolation, the existence of support-like functions is established for functions convex with respect to Chebyshev systems. Unique supports are determined. A characterization of the generalized convexity via support properties is presented.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis