Article ID Journal Published Year Pages File Type
4619208 Journal of Mathematical Analysis and Applications 2010 13 Pages PDF
Abstract

We consider a continuum-discrete model for supply chains based on partial differential equations. The state space is formed by a graph: The load dynamics obeys to a continuous evolution on each arc, while at nodes the good density is conserved, while the processing rate is adjusted. To uniquely determine the dynamics at nodes, the through flux is maximized, with the minimal possible processing rate change. Existence of solutions to Cauchy problems is proven. The latter is achieved deriving estimates on the total variation of the density flux, density and processing rate along a wave-front tracking approximate solution. Then the extension to supply networks is showed.

Related Topics
Physical Sciences and Engineering Mathematics Analysis