Article ID Journal Published Year Pages File Type
4619225 Journal of Mathematical Analysis and Applications 2010 12 Pages PDF
Abstract

In this paper, we study a strongly coupled parabolic system with cross diffusion term which models chemotaxis. The diffusion coefficient goes to infinity when cell density tends to an allowable maximum value. Such ‘fast diffusion’ leads to global existence of solutions in bounded domains for any given initial data irrespective of the spatial dimension, which is usually the goal of many modifications to the classical Keller–Segel model. The key estimates that make this possible have been obtained by a technique that uses ideas from Moser's iterations.

Related Topics
Physical Sciences and Engineering Mathematics Analysis