Article ID Journal Published Year Pages File Type
4619328 Journal of Mathematical Analysis and Applications 2010 13 Pages PDF
Abstract

The problem of almost everywhere stability of a nonlinear autonomous ordinary differential equation is studied using a linear transfer operator framework. The infinitesimal generator of a linear transfer operator (Perron–Frobenius) is used to provide stability conditions of an autonomous ordinary differential equation. It is shown that almost everywhere uniform stability of a nonlinear differential equation, is equivalent to the existence of a non-negative solution for a steady state advection type linear partial differential equation. We refer to this non-negative solution, verifying almost everywhere global stability, as Lyapunov density. A numerical method using finite element techniques is used for the computation of Lyapunov density.

Related Topics
Physical Sciences and Engineering Mathematics Analysis