Article ID Journal Published Year Pages File Type
4619401 Journal of Mathematical Analysis and Applications 2010 10 Pages PDF
Abstract

Let (E,E′) be a dual pair of vector spaces. The paper studies general conditions which allow to lift analyticity (or K-analyticity) from the weak topology σ(E,E′) to stronger ones in the frame of (E,E′). First we show that the Mackey dual of a space Cp(X) is analytic iff the space X is countable. This yields that for uncountable analytic spaces X the Mackey dual of Cp(X) is weakly analytic but not analytic. We show that the Mackey dual E of an (LF)-space of a sequence of reflexive separable Fréchet spaces with the Heinrich density condition is analytic, i.e. E is a continuous image of the Polish space NN. This extends a result of Valdivia. We show also that weakly quasi-Suslin locally convex Baire spaces are metrizable and complete (this extends a result of De Wilde and Sunyach). We provide however a large class of weakly analytic but not analytic metrizable separable Baire topological vector spaces (not locally convex!). This will be used to prove that analyticity is not a three-space property but we show that a metrizable topological vector space E is analytic if E contains a complete locally convex analytic subspace F such that the quotient E/F is analytic. Several questions, remarks and examples are included.

Related Topics
Physical Sciences and Engineering Mathematics Analysis