Article ID Journal Published Year Pages File Type
4619497 Journal of Mathematical Analysis and Applications 2010 10 Pages PDF
Abstract

In this article we provide weak sufficient strong duality conditions for a convex optimization problem with cone and affine constraints, stated in infinite dimensional spaces, and its Lagrange dual problem. Our results are given by using the notions of quasi-relative interior and quasi-interior for convex sets. The main strong duality theorem is accompanied by several stronger, yet easier to verify in practice, versions of it. As exemplification we treat a problem which is inspired from network equilibrium. Our results come as corrections and improvements to Daniele and Giuffré (2007) [9].

Related Topics
Physical Sciences and Engineering Mathematics Analysis