Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4619504 | Journal of Mathematical Analysis and Applications | 2010 | 16 Pages |
We consider a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The process is dynamic, the material's behavior is modeled with an electro-viscoelastic constitutive law and the contact is described by subdifferential boundary conditions. We derive the variational formulation of the problem which is in the form of a system involving a second order evolutionary hemivariational inequality for the displacement field coupled with a time-dependent hemivariational inequality for the electric potential field. Then we prove the existence of a unique weak solution to the model. The proof is based on arguments of abstract second order evolutionary inclusions with monotone operators.