Article ID Journal Published Year Pages File Type
4619507 Journal of Mathematical Analysis and Applications 2010 10 Pages PDF
Abstract

A Trotter–Kato type result is proved for a class of second order difference inclusions in a real Hilbert space. The equation contains a nonhomogeneous term f and is governed by a nonlinear operator A, which is supposed to be maximal monotone and strongly monotone. The associated boundary conditions are also of monotone type. One shows that, if An is a sequence of operators which converges to A in the sense of resolvent and fn converges to f in a weighted l2-space, then under additional hypotheses, the sequence of the solutions of the difference inclusion associated to An and fn is uniformly convergent to the solution of the original problem.

Related Topics
Physical Sciences and Engineering Mathematics Analysis