Article ID Journal Published Year Pages File Type
4619552 Journal of Mathematical Analysis and Applications 2010 13 Pages PDF
Abstract

This paper is concerned with the traveling waves in a class of non-monotone integral equations. First we establish the existence of traveling waves. The approach is based on the construction of two associated auxiliary monotone integral equations and a profile set in a suitable Banach space. Then we show that the traveling waves are unique up to translations under some reasonable assumptions. The exact asymptotic behavior of the profiles as ξ→−∞ and the existence of minimal wave speed are also obtained. Finally, we apply our results to an epidemic model with non-monotone “force of infection”.

Related Topics
Physical Sciences and Engineering Mathematics Analysis