Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4619602 | Journal of Mathematical Analysis and Applications | 2010 | 16 Pages |
In order to extend the theory of optimal domains for continuous operators on a Banach function space X(μ) over a finite measure μ, we consider operators T satisfying other type of inequalities than the one given by the continuity which occur in several well-known factorization theorems (for instance, Pisier Factorization Theorem through Lorentz spaces, pth-power factorable operators …). We prove that such a T factorizes through a space of multiplication operators which can be understood in a certain sense as the optimal domain for T. Our extended optimal domain technique does not need necessarily the equivalence between μ and the measure defined by the operator T and, by using δ-rings, μ is allowed to be infinite. Classical and new examples and applications of our results are also given, including some new results on the Hardy operator and a factorization theorem through Hilbert spaces.