Article ID Journal Published Year Pages File Type
4619610 Journal of Mathematical Analysis and Applications 2010 9 Pages PDF
Abstract

In this paper, we study the steady-state hydrodynamic equations for isothermal states including the quantum Bohn potential. The one-dimensional equations for the electron current density and the particle density are coupled self-consistently to the Poisson equation for the electric potential. The quantum correction can be interpreted as a dispersive regularization of the classical hydrodynamic equations. In a bounded interval supplemented by the proper boundary conditions, we investigate the zero-electron-mass limit, the zero-relaxation-time limit, the Debye-length (quasi-neutral) limit, and some combined limits, respectively. For each limit, we show the strong convergence of the sequence of solutions and give the associated convergence rate.

Related Topics
Physical Sciences and Engineering Mathematics Analysis