Article ID Journal Published Year Pages File Type
4619643 Journal of Mathematical Analysis and Applications 2010 10 Pages PDF
Abstract

Recently, Balaji and Xu studied the consistency of stationary points, in the sense of the Clarke generalized gradient, for the sample average approximations to a one-stage stochastic optimization problem in a separable Banach space with separable dual. We present an alternative approach, showing that the restrictive assumptions that the dual space is separable and the Clarke generalized gradient is a (norm) upper semicontinuous and compact-valued multifunction can be dropped. For that purpose, we use two results having independent interest: a strong law of large numbers and a multivalued Komlós theorem in the dual to a separable Banach space, and a result on the weak* closedness of the expectation of a random weak* compact convex set.

Related Topics
Physical Sciences and Engineering Mathematics Analysis