Article ID Journal Published Year Pages File Type
4619678 Journal of Mathematical Analysis and Applications 2010 10 Pages PDF
Abstract

The subject of this paper is an analytic approximate method for stochastic functional differential equations whose coefficients are functionals, sufficiently smooth in the sense of Fréchet derivatives. The approximate equations are defined on equidistant partitions of the time interval, and their coefficients are general Taylor expansions of the coefficients of the initial equation. It will be shown that the approximate solutions converge in the Lp-norm and with probability one to the solution of the initial equation, and also that the rate of convergence increases when degrees in Taylor expansions increase, analogously to real analysis.

Related Topics
Physical Sciences and Engineering Mathematics Analysis