Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4619689 | Journal of Mathematical Analysis and Applications | 2010 | 8 Pages |
In this paper, we study a class of periodic SEIRS epidemic models and it is shown that the global dynamics is determined by the basic reproduction number R0 which is defined through the spectral radius of a linear integral operator. If R0<1, then the disease free periodic solution is globally asymptotically stable and if R0>1, then the disease persists. Our results really improve the results in [T. Zhang, Z. Teng, On a nonautonomous SEIRS model in epidemiology Bull. Math. Biol. 69 (8) (2007) 2537–2559] for the periodic case. Moreover, from our results, we see that the eradication policy on the basis of the basic reproduction number of the time-averaged system may overestimate the infectious risk of the periodic disease. Numerical simulations which support our theoretical analysis are also given.