Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4619794 | Journal of Mathematical Analysis and Applications | 2009 | 13 Pages |
Abstract
The determination of the basin of attraction of a periodic orbit can be achieved using a Lyapunov function. A Lyapunov function can be constructed by approximation of a first-order linear PDE for the orbital derivative via meshless collocation. However, if the periodic orbit is only accessible numerically, a different method has to be used near the periodic orbit. Borg's criterion provides a method to obtain information about the basin of attraction by measuring whether adjacent solutions approach each other with respect to a Riemannian metric. Using a numerical approximation of the periodic orbit and its first variation equation, a suitable Riemannian metric is constructed.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis