Article ID Journal Published Year Pages File Type
4619798 Journal of Mathematical Analysis and Applications 2009 7 Pages PDF
Abstract

The space of all scalarly integrable functions with respect to a Fréchet-space-valued vector measure ν is shown to be a complete Fréchet lattice with the σ-Fatou property which contains the (traditional) space L1(ν), of all ν-integrable functions. Indeed, L1(ν) is the σ-order continuous part of . Every Fréchet lattice with the σ-Fatou property and containing a weak unit in its σ-order continuous part is Fréchet lattice isomorphic to a space of the kind .

Related Topics
Physical Sciences and Engineering Mathematics Analysis