Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4619868 | Journal of Mathematical Analysis and Applications | 2009 | 11 Pages |
Abstract
Almost transitive superreflexive Banach spaces have been considered in [C. Finet, Uniform convexity properties of norms on superreflexive Banach spaces, Israel J. Math. 53 (1986) 81–92], where it is shown that they are uniformly convex and uniformly smooth. We characterize such spaces as those convex transitive Banach spaces satisfying conditions much weaker than that of uniform convexity (for example, that of having a weakly locally uniformly rotund point). We note that, in general, the property of convex transitivity for a Banach space is weaker than that of almost transitivity.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis