Article ID Journal Published Year Pages File Type
4619964 Journal of Mathematical Analysis and Applications 2009 10 Pages PDF
Abstract

In this paper we introduce the notion of enlargement of a positive set in SSD spaces. To a maximally positive set A we associate a family of enlargements E(A) and characterize the smallest and biggest element in this family with respect to the inclusion relation. We also emphasize the existence of a bijection between the subfamily of closed enlargements of E(A) and the family of so-called representative functions of A. We show that the extremal elements of the latter family are two functions recently introduced and studied by Stephen Simons. In this way we extend to SSD spaces some former results given for monotone and maximally monotone sets in Banach spaces.

Related Topics
Physical Sciences and Engineering Mathematics Analysis