Article ID Journal Published Year Pages File Type
4620129 Journal of Mathematical Analysis and Applications 2009 17 Pages PDF
Abstract

This paper studies the risk minimization problem in semi-Markov decision processes with denumerable states. The criterion to be optimized is the risk probability (or risk function) that a first passage time to some target set doesn't exceed a threshold value. We first characterize such risk functions and the corresponding optimal value function, and prove that the optimal value function satisfies the optimality equation by using a successive approximation technique. Then, we present some properties of optimal policies, and further give conditions for the existence of optimal policies. In addition, a value iteration algorithm and a policy improvement method for obtaining respectively the optimal value function and optimal policies are developed. Finally, two examples are given to illustrate the value iteration procedure and essential characterization of the risk function.

Related Topics
Physical Sciences and Engineering Mathematics Analysis