Article ID Journal Published Year Pages File Type
4620289 Journal of Mathematical Analysis and Applications 2009 9 Pages PDF
Abstract

Exploiting continuity properties of Fourier multipliers on modulation spaces and Wiener amalgam spaces, we study the Cauchy problem for the NLW equation. Local wellposedness for rough data in modulation spaces and Wiener amalgam spaces is shown. The results formulated in the framework of modulation spaces refine those in [A. Bényi, K.A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces, preprint, April 2007 (available at ArXiv:0704.0833v1)]. The same arguments may apply to obtain local wellposedness for the NLKG equation.

Related Topics
Physical Sciences and Engineering Mathematics Analysis