Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4620310 | Journal of Mathematical Analysis and Applications | 2009 | 8 Pages |
Abstract
By Karamata regular variation theory and constructing comparison functions, we derive that the boundary behaviour of the unique solution to a singular Dirichlet problem −Δu=b(x)g(u)+λq|∇u|, u>0, x∈Ω, u|∂Ω=0, which is independent of λq|∇uλ|, where Ω is a bounded domain with smooth boundary in RN, λ∈R, q∈(0,2], lims→0+g(s)=+∞, and b is non-negative on Ω, which may be vanishing on the boundary.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis